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m(V) = F, ' omo Fp : Lp(RY) — Lp(RY).
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Riesz transforms

Let F» : Lp(RY) — Lp(RY) be the (unitary) Fourier transform
F2()(©) = @m) 2 [ 108 ox.
R

For m € Loo(RY) we define the Fourier multiplier
m(V) := F, ' omo Fp : L(RY) — Lp(RY).

Consider the function

&

5 = geeny Rd.
el &= (& &q) €

Ri(&) =

Then R;(V) is called the Riesz transform!

Side remark: Important when m(V) extends boundedly to Lp(R?) — Lp(RY)
= harmonic analysis, Calderén-Zygmund theory, ...
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Riesz transforms

Consider the (positive) Laplace operator

d 52
Harmonic A =— Z ——
analysis: the P Xj
Riesz =
transform
and the j-th coordinate gradient
.0
V/' = /—
0%,

We have
d
Vi=F, ' ogoF, A=Flo|Y & |om=F"0l¢lioF.
j=1

Therefore we have for the Riesz transform:
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A Riesz transform
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Riesz can be defined for any Markov semi-group with generator A (details will come)!

transform
Non-exhaustive list of background:

m Lp-boundedness of R;(V) (Calderén-Zygmund theory, Fefferman-Stein, ...).

m [p-boundedness of Riesz transforms for Ornstein-Uhlenbeck semi-group
(P.A. Meyer, Gundy, Pisier) and other semi-groups (Bakry).

m Links curvature of manifolds (Bakry, Li).

m [p-boundedness of Riesz transforms for non-commutative
Ornstein-Uhlenbeck semi-groups (Lust-Piquard).

m Lp-boundedness of types of non-commutative Riesz transforms (Junge,
Mei, Parcet).
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Riesz transforms

A Riesz transform ]
Vj oA 2

can be defined for any Markov semi-group with generator A (details will come)!

Non-exhaustive list of background:
m Lp-boundedness of R;(V) (Calderén-Zygmund theory, Fefferman-Stein, ...).

m [p-boundedness of Riesz transforms for Ornstein-Uhlenbeck semi-group
(P.A. Meyer, Gundy, Pisier) and other semi-groups (Bakry).

m Links curvature of manifolds (Bakry, Li).

m [p-boundedness of Riesz transforms for non-commutative
Ornstein-Uhlenbeck semi-groups (Lust-Piquard).

m Lp-boundedness of types of non-commutative Riesz transforms (Junge,
Mei, Parcet).

In this talk we shall not focus on Lp-boundedness but rather on applications to
rigidity of von Neumann algebras!
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Quantum Markov semi-groups

Markov process: Probabilistic process in which the subsequent state solely
depends on the current state, and does not remember anything from the past.
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Quantum Markov semi-groups

Markov process: Probabilistic process in which the subsequent state solely
depends on the current state, and does not remember anything from the past.

Quantum probability:
m Probability space = von Neumann algebra with a trace.
m State = density operators (positive, trace 1).

m Markov maps = trace preserving normal unital completely positive (ucp)
maps (quantum channels).
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Quantum Markov semi-groups

Setup:
m M =von Neumann algebra, A C M a nice dense =-subalgebra.
m 7 = normal faithful tracial state on M
m Q. = cyclic vector for GNS-representation of M
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Quantum Markov semi-groups

Setup:
m M =von Neumann algebra, A C M a nice dense =-subalgebra.
m 7 = normal faithful tracial state on M
m Q. = cyclic vector for GNS-representation of M

A quantum Markov semi-group (®¢)>0 is a semi-group of normal unital
completely positive (ucp) maps on a von Neumann algebra M that is
point-strongly continuous. They interpolate to Lo-maps

¢§2) D XQr = d(X)Q2.
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Quantum Markov semi-groups
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m M =von Neumann algebra, A C M a nice dense =-subalgebra.
m 7 = normal faithful tracial state on M

m Q. = cyclic vector for GNS-representation of M

A quantum Markov semi-group (®¢)>0 is a semi-group of normal unital
completely positive (ucp) maps on a von Neumann algebra M that is
point-strongly continuous. They interpolate to Lo-maps

¢§2) D XQr = d(X)Q2.

Unbounded generator A :C Ly(M) — Lo(M) such that,

o (x) = exp(—tA).
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Quantum Markov semi-groups

Setup:
m M =von Neumann algebra, A C M a nice dense =-subalgebra.
m 7 = normal faithful tracial state on M
m Q. = cyclic vector for GNS-representation of M

A quantum Markov semi-group (®¢)>0 is a semi-group of normal unital
completely positive (ucp) maps on a von Neumann algebra M that is
point-strongly continuous. They interpolate to Lo-maps

¢§2) D XQr = d(X)Q2.

Unbounded generator A :C Ly(M) — Lo(M) such that,

o (x) = exp(—tA).

The Riesz transform is then a map
vA©3,

where the gradient V shall be defined on the next slide.
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Gradients of quantum Markov semi-group

Theorem (Cipriani-Sauvageot): there is a derivation V that is the square root of A

A generator of a quantum Markov semi-group on M with some extra technical
conditions omitted. There exists

m A subspace Dom(V) C L(M) that is moreover a *-algebra,
m An M-M-bimodule Hv,
m A closable derivation V : Dom(V) — Hv,

such that V*V = A.
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Gradients of quantum Markov semi-group

Theorem (Cipriani-Sauvageot): there is a derivation V that is the square root of A

A generator of a quantum Markov semi-group on M with some extra technical
conditions omitted. There exists

m A subspace Dom(V) C L(M) that is moreover a *-algebra,
m An M-M-bimodule Hv,
m A closable derivation V : Dom(V) — Hv,

such that V*V = A.

Definition gradient bimodule Hy,. Assume for simplicity Dom(V) is a *-subalgebra
in Dom(A). Consider inner products on Dom(V) ® Dom(V) by

(a® b,c®d) = (I'(a,c)b,d)-,
with
Ma,c) = %(C*A(a) + A(c)*a— A(c*a)).
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Gradients of quantum Markov semi-group

Theorem (Cipriani-Sauvageot): there is a derivation V that is the square root of A

A generator of a quantum Markov semi-group on M with some extra technical
conditions omitted. There exists

m A subspace Dom(V) C L(M) that is moreover a *-algebra,
m An M-M-bimodule Hv,
m A closable derivation V : Dom(V) — Hv,

such that V*V = A.

Definition gradient bimodule Hy,. Assume for simplicity Dom(V) is a *-subalgebra
in Dom(A). Consider inner products on Dom(V) ® Dom(V) by

(a® b,c®d) = (I'(a,c)b,d)-,
with
Ma,c) = %(C*A(a) + A(c)*a— A(c*a)).

Hv is the completion of Dom(V) ® Dom(V) modulo its degenerate part. Set,
x-(a®@b)=xa®b—x® ab, (a® b)-x = aw bx,
V:Dom(V) = Hy x— x® 1.
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Gradients of quantum Markov semi-group

Theorem (Cipriani-Sauvageot): there is a derivation V that is the square root of A

A generator of a quantum Markov semi-group on M with some extra technical
conditions omitted. There exists

m A subspace Dom(V) C L(M) that is moreover a *-algebra,
m An M-M-bimodule Hv,
m A closable derivation V : Dom(V) — Hv,

such that V*V = A.

Definition gradient bimodule Hy,. Assume for simplicity Dom(V) is a *-subalgebra
in Dom(A). Consider inner products on Dom(V) ® Dom(V) by

(a® b,c®d) = (I'(a,c)b,d)-,
with
Ma,c) = %(C*A(a) + A(c)*a— A(c*a)).

Hv is the completion of Dom(V) ® Dom(V) modulo its degenerate part. Set,
x-(a®@b)=xa®b—x® ab, (a® b)-x = aw bx,
V:Dom(V) = Hy x— x® 1.

Leibniz rule: V(xy) = xV(y) + V(x)y. Root: V*V = A.
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Non-commutative Riesz transforms

We now define

<
N
o=

(M) = Hy
called the Riesz transform.
The Riesz transform is isometric:

(VA~2(x), VA~ 2 (X))

1 1
v =(V*VAT2(x), A72(X)) 1, (M)

(AAT2(x), A2 (X)) y(0)

=(X, X) Ly(M)>

(for x in a suitable dense domain).
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On von Neumann algebras...

Property(T) < Rigidity properties

M Quantum Markov semi-groups

Haagerup property, weak amenability, ... < Approximation properties

Markov
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and
approximation
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M Quantum Markov semi-groups

Amenable

®AEA(M2(C):p>\)

Amenability
(Connes: 3! amenable I14-factor)



Quantum Markov semi-groups

Definition: A finite von Neumann algebra M has Haagerup property if there is a
net of normal trace preserving ucp maps ¢; : M — M such that d>§2) is compact
and V¢ € Ly(M) we have H<1>,(.2)§ —¢||—0.
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Quantum Markov semi-groups

Definition: A finite von Neumann algebra M has Haagerup property if there is a
net of normal trace preserving ucp maps ¢; : M — M such that d>,(.2) is compact

and V¢ € Lo(M) we have &P — ¢|| — 0.

Theorem (C-Skalski '15, Jolissaint—Martin '04)

M has Haagerup property iff 3 a quantum Markov semi-group with generator A
with complete set of eigenvalues Ay, k € N (multiplicity allowed) such that

Ay — 0.
Markov
semi-groups
and
approximation
properties :
-




Quantum Markov semi-groups

Definition: A von Neumann algebra M is amenable if there is a net of normal
finite rank ucp maps ®; : M — M such ¥x € M we have ®;(x) — x strongly.
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Quantum Markov semi-groups

Definition: A von Neumann algebra M is amenable if there is a net of normal
finite rank ucp maps ®; : M — M such ¥x € M we have ®;(x) — x strongly.

Theorem ( Cipriani-Sauvageot ‘17, see also C 20)

M is amenable iff 3 a quantum Markov semi-group with generator A with
complete set of eigenvalues Ay, k € N (multiplicity allowed) such that

Ay > log(k).

Markov
semi-groups
and
approximation
properties
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Crash course strong solidity

M is called strong solidity [Ozawa-Popa '07] if for any diffuse amenable von
Neumann subalgebra B C M the normalizing algebra

{u € M unitary | uBu* = B}"’

is again amenable.

Remark: In particular, strong solidity + non-amenability implies:
M 2 Lo(X) x A

or even absence of Cartan subalgebras.

Crash course
strong solidity



(1) Malleable
deformations

Approximate linear
+ almost commuting
intertwiners

QMS’s and
Gradient-S;

W*-CCAP
or W-CBAP
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Crash course Deformation-Rigidity theory

Definition: Akemann-Ostrand

A (finite) von Neumann algebra M has the Akemann-Ostrand property if there
exists a dense unital C*-subalgebra A C M such that

A'is locally reflexive.
There exists a ucp map

0 : AQ@min A® — B(Lp(M))
such that 8(a ® b°?) — ab°? is compact for all a, b € A.

Suppose that A C M is a locally reflexive C*-subalgebra.

Proposition (C, Isono, Wasilewski)
Suppose that

B Hy is weakly contained in Lp(M) ® Lp(M).

m M(a® bP)o VA S = VA Zoab®is compact Va, b € A.
Then M satisfies the Akemann-Ostrand property.

Crash course
strong solidity

Proof. 6(a® b®) := (VA 2)*N(a® b®)VA > will do.
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Quantum groups

A compact quantum group is a pair G := (A, A,) with A a unital C*-algebra and
Ap: A— A® Aacomultiplication such that

(Aa®id)As = (Id ® Aa)As,

and such that
Ap(A)(A®1) and Ax(A)(1® A),

are densein A® A.
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Quantum groups

A compact quantum group is a pair G := (A, A,) with A a unital C*-algebra and
Ap: A— A® Aacomultiplication such that

(Aa®id)As = (id @ Ag)Ag,

and such that
Ap(A)A®1) and  Ax(A)(1® A),

are densein A® A.

Free orthogonal quantum group O,Jg is generated by a matrix u = (uj); with the
relations that u is unitary and U = u. Compultiplication:

n
Doy (uy) = D Uik ® .
k=1

Quantum
groups



Quantum groups

To a compact quantum group G = (A, A,) we associate:

Haar state ¢ : A — C characterized by (¢ ®id) o A(x) = p(x)1 = (Id® ¢) 0 A(X).
Von Neumann algebra Lo (G) := 7, (A)".

Corepresentation a € A ® My(C) such that (A ® id)(a) = aq3azs.

Irreducible if (1 ® T) = (1 ® T)aimplies T =1 for all T € Mx(C).

Tensor products and sums a @& 8 € A® (Mn,, (C) ® Mn; (C)). a ® B = 1213
Fusion rules a ® 8 =~ ., cin(s) M -

Matrix coefficients Pol(G) := {(id ® w)(a) | w € Mp, (C)*, a corep}.

Quantum
groups



Quantum
groups

Free orthogonal quantum groups

We know for free orthogonal quantum groups Oﬁ:

Non-amenability [Banica].

Factoriality [Vaes—Vergnioux '03, see also Vaes (Appendix CFY) ’12].
Baum-Connes conjecture [Voigt '07].

Connes embedding problem [Brannan, Collins, Vergnioux ’15].

Haagerup property and completely contractive approximation property
[Brannan 11, Freslon '12, de Commer—Freslon—Yamashita '13].

Loo(OF) # Loo (?n) distinction from free factors [Brannan-Vergnioux, '16,
see also Elzinga '20].

Strong solidity [Fima-Vergnioux 14, Isono’13, C '20].




Quantum
groups

Quantum groups and QMS’s

Quantum Markov semi-group of central multipliers is a Quantum Markov
Semi-group @ := (¥t : Loo(G) = Loo(G))t>0 such that for every irreducible
corepresentation o there exists A, € Rx>q with

(¢t ®id)(a) = Aqcr.

® has subexponential growth if for every «, v € Irr(G),

. . Dg
lim Ag = oo, lim sup -1/ =0,
Ao P gl cagpey, | Ba
B’ €lr(G)

Theorem C, C-Isono-Wasilewski

If ® has subexponential growth then MN(a ® b°?) o VA" =VA Zoab®is
compact Va, b € Pol(G).




Example: free orthogonal quantum groups

Representation theory of O,Jg is given by N with fusion rules
a@f=la-plOla—B+2)[@|la-B+4e&...0a+p

[Banica).
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Example: free orthogonal quantum groups

Representation theory of O,Jg is given by N with fusion rules
a@f=la-plOla—B+2)[@|la-B+4e&...0a+p

[Banica).

Theorem: There exists a quantum Markov semi-group ® := (®¢)¢>0 on LDO(OE)
of central multipliers determined by

(¢ ®id)(a) = exp (—tAq) @,

with
e (1) o 14qg 22

2
= = + ,
O e e TR N

and ¢, the a-the Chebyshev polynomial. Moreover ¢ is approximately linear.

{e%

Quantum
groups

[C.f. Brannan '11, Cipriani-Kula-Franz '15, Fima-Vergnioux '14, C-Skalski '15, Jolissaint-Martin *04].



Gradient-S> = Weak containment Hy

Question: When is Hy weakly contained in Lo(G) ® Lo(G)?
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Gradient-S> = Weak containment Hy

Question: When is Hy weakly contained in Lo(G) ® Lo(G)?

Definition: (®¢);>¢ is immediately gradient-S, if for every a, b € Pol(G) and > 0
the mapping

xQr — di(aA(x)b+ A(axb) — aA(xb) — A(ax)b)Q2-,

is bounded L(G) — Lo(G) and for t > 0 this mapping is moreover
Hilbert-Schmidt.
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Gradient-S> = Weak containment Hy

Question: When is Hy weakly contained in Lo(G) ® Lo(G)?

Definition: (®¢);>¢ is immediately gradient-S, if for every a, b € Pol(G) and > 0
the mapping

xQr — di(aA(x)b+ A(axb) — aA(xb) — A(ax)b)Q2-,

is bounded L(G) — Lo(G) and for t > 0 this mapping is moreover
Hilbert-Schmidt.

Theorem (C)

If & is immediately gradient-S, then Hy is contained in a direct sum of copies of
Lo(G) ® Lx(G). In particular Hy is weakly contained in L»(G) ® Lo(G).

Gradient
bimodules



Property = Gradient-S, = Weak containment

Hy

Fora, 8,7 € It(G), B2 C a ® B ® ~ we define

L™ ={(B1, B2) € In(G) x Im(G) | B1 C @ ® B, 62 C B1 ® 7},
R ={(B1,B2) € In(G) x In(G) | 1 S B® 7,82 Ca®Br},
Lg g, ={B1 € (B) | (81, B2) € L3},
Rg,’gz ={B1 € In(G) | (B1,B2) € RZ""}.

Definition 2.2. We say that @ is approrimately linear with almost commuting intertwiners if the following
holds. For every a.y € Irr(G) there exists a finite set Aop := Asofe.) C Irz(G) such that for every
3 € Int(G)\Ago and fia C a @ § @ 7 there exist bijections (called the v-maps)
$2) 1 L5, — Ry
such that the following holds. There exists a set A € Irr()) Agg and a constant € := C(a,7) > 0 such
that

(1) Forall § € A.(By,8) € L7 we have

(2.1) A

Ag, — Ays,a.) + Agy| <C qdim(F) !
and

(22) As—Asl £C.
For all 3 € Irr(G)\(A U Ago). (51, 52) € LF™ we have

(23) As— Ag, — Augs, o) + D, =0

(2) For all § € A, (81, fa) & L5” we have

(24) inf [V (Ve @id,) - 2V P54, @ Vs el < € adim(8) 7"
For all § € Irr(G)\ (AU A). (31, 52) € L3 we have
inf V(v i) - B, e VET =0

(3) There exists a polynomial P such that for every N € N we have
. (2.6) #{de A| Ag < N} < P(N).

Gradient s

bimodules and we have that 8 — 8(3 € A) qdim(#)~! is square summable.



Property = Gradient-S, = Weak containment
Hy

Theorem (C)

If ® is appproximately linear with almost commuting intertwiners then it is
immediately gradient-S, and consequently Hy is weakly contained in
L(G) ® L2(G).

Theorem (C)

$ on O; (or SUq4(2)) as before is approximately linear with almost commuting
intertwiners.
Theorem (C)

Appproximately linearity with almost commuting intertwiners is stable under
m Monoidal equivalence.

m Taking dual quantum subgroups.

m Free products.

m Products with finite (dimensional quantum) groups.
|

Free wreath products with Si;, N > 5 [Lemeux-Tarrago, see also Bichon,

Gradient Tarrago-Wabhl].
bimodules



Conclusion

Theorem (C)

If & witnesses the central ACPAP of a compact quantum group of Kac type G and
is approximately linear with almost commuting intertwiners then it is strongly solid.

Corollary: examples

Examples include anything that can be constructed from SUg(2) and taking
Monoidal equivalences.

Dual quantum subgroups.

Free products.

Products with finite (dimensional quantum) groups.

m Free wreath products with Sf,, N > 5.

Includes all non-colored non-crossing partition quantum groups (=free orthogonal
easy QGs).

Gradient
bimodules



Conclusion in non-Kac case

Theorem (C)

For any F € GLy(C) the von Neumann algebras Lo, (05 (F)) and Loo (Uj; (F))
are strongly solid.

Gradient
bimodules



Conclusion in non-Kac case

Theorem (C)

For any F € GLy(C) the von Neumann algebras Lo, (05 (F)) and Loo (Uj; (F))
are strongly solid.

Recall strong solidity: For any diffuse faithfully expected amenable von Neumann
subalgebra B C L. (O};) the normalizing algebra

{u € Lo(O}) | uBu* = B}

is again amenable.

Gradient
bimodules
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Gaussian algebras

Fix H = C" finite dimensional Hilbert space = Set Fock space:

F=CQoHo®»HRH)d(HRIHRH)d(HRIHRHRH)® ...



Gaussian algebras

Fix H = C" finite dimensional Hilbert space = Set Fock space:
F=CQoHo(HH) o (HOHRH)®(HOIHRHQH)® ...

Consider creation and annihilation operators:

a@) m@..MmM=£(0M@...Qm,
a€) m®...0nn = EmM)m ... Q.



Gaussian algebras

Fix H = C" finite dimensional Hilbert space = Set Fock space:

F=CQaHaHeH) eHoHoH) & (HIHRH®H)®...

Consider creation and annihilation operators:

a@) m@..MmM=£(0M@...Qm,
a€) m®...0nn = EmM)m ... Q.

Voiculescu’s free Gaussian algebra: I'(H) = {a(¢) + a*(¢) | € € H}Y".



Gaussian algebras

Fix H = C" finite dimensional Hilbert space = Set Fock space:

F=CQaHaHeH) eHoHoH) & (HIHRH®H)®...

Consider creation and annihilation operators:

a@)me..@m=£E0Mm® ...,
ag) m®...Qnn = En)ne®...Qnn.

Voiculescu’s free Gaussian algebra: F'(H) = {a(§) + a*(€) | € € H}Y.

Remark: Can g-symmetrize the inner product = g-Gaussian algebras q € [—1, 1]
(Bozejko-Speicher, 1993).

m g = 1 bosonic.
m g = —1 fermionic, harmonic oscillator.
m g = 0 free, c.f. above.



Quantum Markov semi-groups

Example (continued): £1 ® ... ® &y € F in the Fock space. Then 3
W(& ®...&n) € T(H) such that

WE®..06=6®...046.

Note: this is quantization.



Quantum Markov semi-groups

Example (continued): £1 ® ... ® &y € F in the Fock space. Then 3
W(& ®...&n) € T(H) such that

WE®..02=6®...0&.

Note: this is quantization.

The Fock space semi-group
oD FSF @ tam e ®... ®h
lifts to the algebra level
O T(H) = T(H): WG ®...0&) — e "W ®...0&h).

Note: this is second quantization.



Quantum Markov semi-groups

Example (continued): £1 ® ... ® &y € F in the Fock space. Then 3
W(& ®...&n) € T(H) such that

WE®..02=6®...0&.

Note: this is quantization.

The Fock space semi-group
oD FSF @ tam e ®... ®h
lifts to the algebra level
O T(H) = T(H): WG ®...0&) — e "W ®...0&h).

Note: this is second quantization.

(®¢)r>0 is a quantum Markov semi-group (Ornstein-Uhlenbeck semi-group).



Quantum Markov semi-groups

Theorem (C-Isono-Wasilewski)
(®¢)r>0 is immediately gradient-S; if

lgl < dim(H)~"/2,

and consequently I'q(H) has the Akemann-Ostrand property.

Theorem (Shlyakhtenko)

I'4(H) has the Akemann-Ostrand property for |g| < v/2 — 1 and H finite
dimensional.

Theorem (Avsec)

I'q(H) is strongly solid for all g € (—1, 1) and H finite dimensional.

Open questions:
m Strong solidity with H infinite dimensional.

m Akemann-Ostrand property beyond the range
lg| < max(v/2 — 1,dim(H)/2).
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